Effect of dispersant on asphaltene suspension dynamics: aggregation and sedimentation.

نویسندگان

  • Sara M Hashmi
  • Abbas Firoozabadi
چکیده

When oil is mixed with light alkanes, asphaltenes can precipitate out of oil solutions in a multistep process that involves the formation of nano and colloidal scale particles, the aggregation of asphaltene colloids, and their eventual sedimentation. Amphiphilic dispersants can greatly affect this process. The mechanism of the dispersant action in colloidal asphaltene suspensions in heptane has been shown through previous work to be due in part to a reduction in the size of the colloidal asphaltene particles with the addition of dispersant. However, previous studies of the sedimentation behavior revealed evidence of aggregation processes in the colloidal asphaltenes in heptane that has yet to be investigated fully. We investigate the effect of dispersants on this aggregation behavior through the use of dynamic light scattering, showing that both the amount of dispersant and the amount of heptane dilution can slow the onset of aggregation in colloidal asphaltene suspensions. An effective dispersant acts by suppressing colloidal aggregation in asphaltene suspensions, as shown by light scattering, and therefore also slows separation from the bulk, as revealed through macroscopic sedimentation experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling Nonpolar Colloidal Asphaltene Aggregation by Electrostatic Repulsion

While aromatic chemicals are applied to petroleum oil systems to thermodynamically prevent asphaltene precipitation, amphiphilic dispersants can truncate the precipitation process and create stable suspensions of asphaltene colloids in the submicrometer size range. Bulk sedimentation and dynamic light scattering have shown that stabilizing dispersants inhibit colloidal asphaltene aggregation at...

متن کامل

Dispersion Properties of Nano YSZ Particles in Aqueous Suspensions

In the present research, the aqueous suspensions of nano-sized YSZ particles were prepared using a common and available dispersant (Dolapix CE64) at different pH values and their stability were evaluated through the sedimentation height, viscosity measurement, and microstructural observation. Different amounts of dispersant were tested and the optimum percentage was examined by measuring the vi...

متن کامل

TiO2 Pigment Suspension Behaviour upon Adsorption of Polymeric Dispersants

The influence of polymeric dispersants containing different functional groups on TiO2 pigment particle suspension was investigated at pH 6.0 and 9.5, using rheology and particle size data. The dispersants chosen were polyacrylic acid and modified polyacrylamides including homo and copolymers modified with carboxylate and/or hydroxyl groups. The pigment suspension was strongly affected by both p...

متن کامل

Nanoaggregation and Solubility of Crude Oil Asphaltenes from Molecular Dynamics Simulations

The aggregation and solubility of asphaltenes are studied by classical molecular dynamics simulations. Average three-dimensional atomistic models are built on the basis of experimental data for the asphaltenes from a series of crude oil samples. The simulation of two such asphaltene models in four different solvents puts into evidence the formation of oligomeric clusters and gives clues to the ...

متن کامل

Mesoscale Simulation and Machine Learning of Asphaltene Aggregation Phase Behavior and Molecular Assembly Landscapes.

Asphaltenes constitute the heaviest fraction of the aromatic group in crude oil. Aggregation and precipitation of asphaltenes during petroleum processing costs the petroleum industry billions of dollars each year due to downtime and production inefficiencies. Asphaltene aggregation proceeds via a hierarchical self-assembly process that is well-described by the Yen-Mullins model. Nevertheless, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 114 48  شماره 

صفحات  -

تاریخ انتشار 2010